
The Cosine Quantogram 
 

Kendall’s 1974 derivation of the cosine quantogram as a method for determining the existence of as 
well as deriving an estimate for a quantum unit is based on the following: 

 
Suppose we wish to demonstrate that an unknown quantum unit q has given rise to our 

data, where Yi represents the measurement of object i, i=1,…,N. Specifically we hypothesize 
that the ith observation, Yi, is an unknown number of integer multiples Mi of our unknown 
quantum unit plus a small amount of unknown error. Consider for a moment a simple model Yi = 
Miq+εi, i = 1, …, N. For a fixed q, if q is a quantum, the associated errors should be small. For q 
over some range (qL, qU), calculate  

φ(q) = 2
N

cos(2π xi / q)
i=1

N

∑  

Graph φ(q) vs. q; call this the cosine quantogram.  
 

We wish to find q* such that φ(q) is maximized. This will be our maximum likelihood estimate. Note that 
the cosine quantogram is proportional to the log-likelihood for a von Mises distribution with density function  

f (x |δ ,q) = (2π I0 (δ ))
−1eδ cos(2π x /q)  

where δ≥0, x>0, q>0 and I0(δ) is a modified Bessel function of order 0. The maximum is determined numerically 
for some q in the interval (qL, qU). Prior to undertaking this numerical procedure, however, Kendall 
recommends “unrounding the data”. The process of unrounding involves adding a random value within [−0.05, 
0.05) for measurements rounded to the nearest decimeter, a random value within [−0.005, 0.005) for 
measurements rounded to the nearest centimeter, and so on. 
 
Our Approach: A Generalized Framework for Quantal Inference 
 

We have developed a generalized framework for inference for quanta as follows:  
 

Let Yijkl represent the measurement of block l from building i of type j with measurement 
taken along dimension k. In general we can express the model for quantum identification as 
follows: 

Yijkl = Mijkl qijk + εijkl,  
where Mijkl is an unknown positive integer, qijk is the unknown quantum that we wish to estimate, 
and εijkl is an error term. 
 

We can use this framework now to construct hypotheses regarding the q’s, then build test statistics 
based on the ratio of the likelihood with respect to one hypothesis vs. a suitable alternative. Likelihood theory 
gives that the maxima of the relevant cosine quantograms can be used to construct this test. In particular we 
might wish to test the hypothesis that the quantum units used for all buildings in our sample are the same. We 
can write this hypothesis symbolically as a null hypothesis H0:qi.. = q…, all i, where we use the “dot” notation to 
indicate that the factor that is represented with ‘.’ is averaged over in the analysis. For inferential purposes we 
can write our alternative hypothesis as HA:qi.. ≠ q…, for at least one value of i. We note that our inferential 
method will allow for testing the identity of the quantum units used in 3 or more buildings as well. 

Our method then proceeds in stepwise fashion as follows:  
Step 1: Unround the analytic dataset. 
Step 2: Derive cosine quantogram and numerically estimate the quantum unit. Call this q*. 
Step 3: Randomly resample from the empirical distribution function of measurements. Repeat Step 2. 
Step 4: Repeat Step 3 a large number of times. Obtain confidence limit estimates from the empirical 

distribution function of the estimates obtained. 



Step 5: For the unrounded data from Step 1, calculate the likelihood of the data under H0 and under HA. 
Take the ratio of these likelihoods (or alternatively, the difference between the log-likelihoods). Call this the test 
statistic. 

Step 6: For the random resamples generated in step 4, calculate the likelihoods and the difference 
between the log-likelihoods.  

Step 7: Obtain the empirical distribution function of these log-likelihoods.  
Step 8: From this empirical distribution function, derive a critical region for a test of size α.  
Step 9: Determine if the test statistic falls inside or outside of the critical region, and reject or not reject 

H0 in favor of HA accordingly.   
If we assume that the data follow a von Mises distribution, we use as our test statistic the logarithm of 

the likelihood ratio (LLR) written as follows: 

 

LLR = δ cos(2π yijkl / q̂ijk
*0 ) − δ cos(2π yijkl / q̂ijk
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 where c(Ñ) is a constant function dependent only on Ñ, the vector of the sample sizes of units for all possible 
combinations of the indices. Here the superscripts *0 and *A are used to denote under which hypothesis the 
quantal value(s) and resulting error terms are estimated using the cosine quantogram. Let T1 designate the 
first term in the LLR and T2 the second term. Since the constant will not matter in our testing, our test statistic 
is Tdiff=T1-T2. However note that Tdiff is also a function of the parameter δ. Still, we can factor out δ and use as 
our test statistic Tdiff/δ without loss of power. We can resample the dataset to arrive at point and interval 
estimates for the q*ijk as well as to derive test boundaries for Tdiff/δ. We note that we can develop Tdiff/δ’s for 
other hypotheses, use the cosine quantograms to estimate the q’s and perform our hypothesis test. 
 


